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Purpose: To demonstrate intrafractional MR tumor tracking using a prototype linac-MR by deliver-
ing radiation to a moving target undergoing simulated tumor motions.

Methods: A prototype linac-MR at the Cross Cancer Institute was used for intrafractional MR imag-
ing and simultaneous beam delivery. A Varian 52-leaf MK-II multileaf collimator (MLC) was used
for beam collimation. The authors used an inhouse built MR compatible motion phantom to simu-
late tumor motions during tracking with two different motion patterns (sine and modified cosine).
Gafchromic film was inserted in the phantom to measure radiation exposure, and this film mea-
surement was converted to dose (cGy) for further analysis. The authors demonstrated intrafractional
tracking in various scenarios: [Scenario 0 (S0)] no phantom motion + no beam margin, (S1) no phan-
tom motion + maximum beam margin, (S2) phantom motion + no beam margin, (S3) S2 + MLC
tracking, and (S4) S3 4 motion prediction. SO emulates a perfect tumor tracking scenario, and its
result was used as a “gold-standard” to evaluate tracking accuracy from other scenarios. The authors
compared (1) time difference in phantom and MLC motion curves in S3 and S4, and (2) dose profiles
(50% beam width, 80%—20% penumbra width) from scenarios S1-S4 to SO.

Results: In S4, no observable time difference exists between the phantom and MLC motion curves,
indicating that MLC tracks phantom motion accurately. Comparing S4 to SO, 50% beam width reveals
minimal differences of < 0.5 mm, while the increase in 80%—-20% penumbra width is limited to 0.4
and 1.7 mm in the sine and modified cosine patterns, respectively.

Conclusions: The authors report the first demonstration of intrafractional tumor tracking using
2D MR images. During 2 min of tracking, the authors delivered highly conformal dose to a mov-
ing target that simulates tumor motions. Compared to static target irradiation, the 50% beam width
remains essentially the same (within 0.5 mm), with an increase in 80%—-20% penumbra width of less
than 1.7 mm in moving target irradiation. These results illustrate potential dosimetric advantages of
intrafractional MR tumor tracking in treating mobile tumors as shown for the phantom case. © 2073
American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4802735]

Key words: intrafraction motion management, lung-tumor tracking, linac-MR, MRI guidance, organ
motion compensation

. INTRODUCTION

Intrafractional tracking of mobile tumors is of considerable
interest. Several groups are investigating intrafractional tu-
mor tracking systems'™ to deliver highly conformal radia-
tion dose to mobile tumors. Krauss et al.* and Sawant et al.”
have performed phantom studies demonstrating the feasibility
of 2D intrafractional lung-tumor tracking. In these studies, a
tumor surrogate was driven according to a sinusoidal trajec-
tory and its position was detected using a monitoring system
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developed by Calypso Medical Technologies (Seattle, WA).
Cho et al.? suggested the simultaneous use of kV/MV imag-
ing for 3D intrafractional tracking, where a gold marker was
used as a tumor surrogate. Also, commercial systems perform
intrafractional tumor tracking using different types of tumor
surrogates.>”’

Despite the wide variety of tracking techniques, all current
tracking methods utilize indirect tracking through the use of
internal and/or external tumor surrogates. Reliance on surro-
gates, however, has been shown to be problematic for accurate
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tumor tracking for the following reasons: (1) implanted seeds,
for liver and prostate tumors,® have been shown to migrate
by 5.1 and 4.5 mm from their initial positions, respectively.
In some cases, the seeds might be completely dislodged dur-
ing the course of the radiation treatment. Imura et al.,” in a
study of 57 patients, reported that 25% of total surrogates was
lost during the course of lung-tumor treatments; (2) track-
ing using external surrogates assumes good correlations be-
tween internal tumor motion and external surrogate displace-
ment, whereas mismatches between tumor and surrogates up
to 9mm have been shown;'®!" and (3) any deformation of
tumor shape is completely unknown during tracking. More-
over, since the implanted seeds are usually placed only within
the tumor, the motion of the nearby soft-tissue and healthy or-
gans, and their relationship to the tumor, are not known during
tracking. Therefore, to account for the uncertainty in correla-
tion between tumor position and surrogates, extended regions
surrounding the lesion must be irradiated in order to ensure
sufficient target coverage.'?

Although modern imaging systems can provide 3D or 4D
anatomical information, all imaging systems are still surro-
gates to the actual tumor shape, size, and location. In 2008, it
was claimed that the imaging modalities used in cancer treat-
ment must be improved by 3—4 orders of magnitude in terms
of their tumor-to-background ratio, in order to make mean-
ingful impact on cancer treatment.'> While the improvements
of imaging systems are in progress, the limitations of relying
on imaging in radiation treatment need to be acknowledged.

In contemporary radiation treatment process, computed to-
mography (CT) based target definition is the standard of care.
However, large efforts have been made to incorporate mag-
netic resonance imaging (MRI) in target definition due to its
superior soft tissue contrast that enables to visualize tumor ex-
tent in more detail.'*'> A recent study investigated the dose
calculation accuracy for different tumor sites (lung, prostate,
brain, head, and neck) from 40 patients using MRI data, and
compared it to CT based treatment plans. Here, the target vol-
ume was defined on MR images and registered to the CT im-
ages. Whether the treatment plan was based on CT or MRI,
this study showed that nearly the same number of monitor
units (<1.6% difference) were required to deliver the pre-
scribed dose.'®

Our group at the Cross Cancer Institute reported the
first integrated radiotherapy-MR system known as a linac-
MR.!7 With this system we have investigated the require-
ments for MR-based intrafractional tumor tracking. These
requirements include (1) characterization of multileaf colli-
mator (MLC) motor operation in an external magnetic field,'3
(2) measurement of radio frequency (RF) noise from MLC
and shielding technique,' (3) development of lung-tumor
autocontouring®” software compatible with MR images, and
(4) development of lung-tumor motion prediction software for
MR-based tracking.?!

We have focused on lung-tumor tracking due to the po-
tential for a large range of motion during treatment delivery.
Various studies have shown that lung-tumor may move up to
40 mm in superior-inferior (SI), 15 mm in anterior-posterior
(AP), and 10 mm in left-right (LR) directions during normal
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breathing.?>?* Volume changes up to 20% and rotations up
to 50° with respect to each axis have also been reported.”
Several methods have been used to reduce the range of res-
piratory motion in radiotherapy, including active-breathing
control (ABC) or forced shallow breathing with abdominal
compression (FSB).”® In ABC, the patient must follow the
breathing instructions, thus many infirm patients may have
difficulties to comply. FSB may cause problems for the pa-
tients with particularly poor pulmonary function, and those
with percutaneous gastrostomy tube. Similarly, the patients
with large abdominal aortic aneurysms may not be suitable
for FSB.?’ Because it is not always possible to apply the meth-
ods of respiratory motion reduction, we focused on tracking
lung-tumor motions during normal breathing.

In this study, we report the first physical demonstration
of intrafractional tumor tracking using 2D MR images that
is built upon our previous investigations.'®>! An MR com-
patible motion phantom was used to simulate tumor motion
during beam delivery. We present our experimental setup, dif-
ferent tracking scenarios that we tested, and their results.

Il. MATERIALS AND METHODS
IlLA. Experimental setup
ll.LA.1. Linac-MR and MLC

Figure 1 shows our setup for tracking experiments. We
used a prototype linac-MR for intrafractional MR imaging
and simultaneous beam delivery. A Varian 52-leaf MK-II
MLC was used for beam collimation during tracking, which
was controlled by inhouse built software and electronics. In
this study, ten MLC leaves (five in each carriage, MLC-L and
MLC-R in Fig. 1) were used for tracking.

All MR images were acquired using a balanced steady
state free precession (bSSFP) technique in the beam’s eye
view (BEV) plane (FOV = 256 x 192 mm, 2 x 2 x 30 mm?,
TE = 1.3 ms, TR = 2.6 ms, dynamic scan time = 250 ms, i.e.,
4 fps). A top down view of MR imaging slice is indicated in
Fig. 1(a), which is at the center of the magnet and perpendic-
ular to the beam. A sample sequence used to perform tracking
in this study is shown in Fig. 2. More details regarding bSSFP
sequence can be found in Bernstein.?®

I.LA.2. MR compatible motion phantom

Figure 1 illustrates the phantom setup during tracking
experiments. A more detailed phantom design is shown in
Fig. 3. Our phantom was driven by a programmable motor
using a shaft that is both nonmagnetic and nonconductive to
create 1D motion along the axis of the RF coil as indicated in
Fig. 3(d). This creates phantom motion in the direction per-
pendicular to the x-ray beam along the leaf motion direction
of the MLC.

This phantom is made of two symmetrical parts as shown
in Fig. 3(a). Here, the central custom-shaped target repre-
sents a tumor volume, which is composed of 70 g/l of porcine
skin gelatin containing approximately 10 mM of aqueous
copper sulfate (CuSO4:5H,0) and 0.1% sodium benzoate
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F1G. 1. Experimental setup: (a) brief diagram of entire setup (top down view), (b) prototype linac-MR and phantom setting with RF cage open, (c) side view

with RF cage closed.

(NaCgH5CO,). T} and T, values of the target material were
measured to be approximately 22 and 16 ms, respectively.
Copper sulfate was added to reduce the relaxation times of
the gel, which allowed for better-quality T;-weighted imaging
used extensively for scouting. Sodium benzoate was added as
a preservative. Density of the target material was measured to
be 0.99 g/ml, which is very similar to water. Because the tar-
get material is mostly composed of water with a small amount
of skin gelatin, the effective atomic number of the target ma-
terial should be equal to that of water, which is known to be
3.4.% A small impact of this material on the dose delivered
to the film does not influence the result of this study, because
film comparisons are all relative. In in vivo MR images us-
ing the bSSFP sequence, the lung background is darker than
the tumor.*® For our phantom, the target is embedded in a
polystyrene case that contributes no MR signal in the bSSFP
imaging sequence generating darker background to the target,
and provides a rigid casing to contain the target material.

We inserted Gafchromic EBT2 film (International Spe-
cialty Products, Wayne, NJ) between the two cases to mea-
sure radiation exposure during tracking. To compare radiation
exposures in different films, the following registration tech-
nique was used. Prior to irradiation, each film was placed and
fixed on the case as shown in Fig. 3(a). Then, we visually in-
spected the eight inner corners of the phantom shape and man-
ually marked them on the film using permanent ink. These
are referred as surrogate markers as indicated by red dots in
Fig. 3(a).

RF A | —
G ! ! ! -
z =l I : = O
G, :
G ! !
i — . —
Echo ™

FiG. 2. Sample bSSFP sequence used to perform tracking in this study.
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Figure 3(b) shows the phantom in its assembled state. An
MR image of this phantom acquired during the tracking ex-
periment is shown in Fig. 3(c) illustrating the MR signal from
the gelatin “tumor” surrounded by background signal. This
image was taken while the phantom and MLC were in motion
during beam delivery. RF noise from the MLC is shielded us-
ing the method developed in a previous study.'® Figure 3(d)
shows the phantom and RF coil placed in the linac-MR.

1lLA.3. MLC and phantom position monitoring
during tracking

Each MLC leaf is driven by a DC servo motor located in
the back of the carriage. Each motor has a magnetic encoder
that detects rotor position, which in turn, provides leaf po-
sition. Hence, ten encoders (five in each carriage, Encoder-
L and Encoder-R in Fig. 1) were used to sense and mon-
itor leaf motions in this study. The DC servo motors were
controlled by motor drivers programmed through LabVIEW
scripts (LabVIEW 2011, National Instruments, Austin, TX)
implemented on a field programmable gate arrays (FPGA)
chip.

Our motion phantom has an optical encoder (Fig. 1) placed
on the shaft that measures phantom position. The optical en-
coder reading was primary feedback to a separate motor driver
that was programmed to control phantom motions.

During the tracking experiments, we recorded all encoder
readings from each MLC leaf and the phantom. All encoder
readings were taken at the same instance every 50 ms and
time-stamped using an internal clock (millisecond resolution)
in the LabVIEW software.

I.LA.4. Tumor motion simulation

We drove our phantom following a preprogrammed motion
pattern during the tracking experiments. The phantom was
moving in the read encoding direction. The speed of phan-
tom when the image was taken depends on the asynchronous
phase of motion pattern, ranges from 0 to 3.1 cm/s. Two dif-
ferent motion patterns were used in this study to simulate
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Phantom moving direction

FI1G. 3. Motion phantom: (a) phantom parts, (b) assembled phantom, (c) MR image during tracking and beam delivery, (d) phantom and RF coil placed in the

linac-MR.

tumor motions: (1) a sine pattern (period: 6.7 s, motion range:
4 cm, max. speed: 1.8 cm/s) representing ideal, periodic tumor
motions, and (2) a modified cosine pattern (period: 5.1 s, mo-
tion range: 4 cm, max. speed: 3.1 cm/s), following the form
y(t) = a-cos*(t) + b, which represents more realistic lung-
tumor motions with time ¢ and constants a and b. Lujan et al.3!
suggested the modified cosine pattern to model breathing mo-
tions, which is shown to be related to abdominal tumor mo-
tions including lung-tumors.?> These two patterns have been
used in previous studies to validate surrogate based tracking
systems.!™ The motion range and period of these motion pat-
terns were determined in reference to the previously reported
lung-tumor motions in the SI directions.’>?* Specifically, the
motion range was selected from the extreme end of the spec-
trum to challenge the tracking system.

ILA.5. Beam calibration to MR images

As shown in Fig. 1(a), MLC is the only beam compen-
sator/collimator used in the linac-MR. The relationship be-
tween MLC leaf positions and corresponding beam shape and
position at the imaging slice indicated in Fig. 1(a) was es-
tablished through film measurements. Based on this, we per-
formed the following steps to calibrate the radiation beam to
MR images.

First, MR images were acquired when the phantom was
placed at three known locations within the imaging plane:
(1) at the center of the magnet (i.e., equilibrium position),
(2) 2 cm inward from the equilibrium position along the mo-
tion direction in Fig. 1(a), and (3) 2 cm outward from the
equilibrium position. The 2 cm displacement was chosen to
encompass the potential motion range of the phantom used in
this study.

Second, we controlled the MLC to conform the radiation
beam to the target shown in the MR images at the above three
locations. The accurate beam shape concordance with MR im-
age was confirmed with film measurements. From this, we es-
tablished the relationship between the imaging coordinates of
the MRI and MLC leaf positions for three different locations
in the imaging plane.
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The MLC leaf positions for any other possible locations
tracked using the intrafractional MR images were calculated
by linear interpolation between the three calibration points.

II.B. Software development for intrafractional
tumor tracking

Il.B.1. Autocontouring software

An autocontouring software used in this study is based on
our previously developed autocontouring algorithm,”’ which
determines both the shape and position (i.e., centroid) of a tu-
mor from each intrafractional MR image in less than 5 ms.
The software was developed to perform with 2D MR images.
There exist five parameters that may impact the accuracy of
autocontouring within this software, thus the values of these
parameters must be determined prior to autocontouring. Pa-
rameter optimization uses images that are acquired prior to
tracking and contain the outlined target. The autocontouring
software is fully automatic in its determination of the parame-
ters as indicated in Sec. ILA.1.b of our previous publication.?’
More discussions regarding the parameter optimization pro-
cess in this study follow in Sec. II.C.1 of this report.

Il.B.2. System delay and motion prediction software

System delay is the time interval between the detection of
current tumor position data (i.e., image acquisition) and the
beam delivery upon the MLC reaching the target position.
In our tracking method using the linac-MR, system delay is
comprised of image acquisition, image processing, and MLC
motion times.

To determine the amount of system delay, we performed
tumor tracking without a motion prediction capability using
both motion patterns. During this test, the positional changes
of the phantom and MLC were monitored via the optical
and magnetic encoders reading, respectively, as explained in
Sec. II.A.3. These motion data were plotted as a function of
time, and we calculated system delay from the time difference
between the two curves. The result was used as input to our
motion prediction software as shown in Step 6 in Fig. 4.
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FIG. 4. Overview of intrafractional tumor tracking.

We developed motion prediction software to compensate
for the tumor motion during system delay. Artificial neural
networks (ANN) were used in this software to predict future
tumor positions based on the previous ones. The performance
of ANN is known to be strongly dependent on its structure
and initial weights (IW).3*3* That is, prediction accuracy of
our software for a given patient’s motion pattern might be very
sensitive to the ANN. In our previous study using the recorded
data of 29 lung cancer patients, the root mean squared er-
ror (RMSE) in motion prediction was reduced by 30%—-60%
when using patient specific ANN and IW compared to a sin-

Medical Physics, Vol. 40, No. 5, May 2013

gle ANN and IW.?! For this reason, ANN and IW are op-
timized and trained prior to motion prediction. More expla-
nations on these processes follow in Secs. II.C.1 and II.C.2.
As a result, we were able to use ANN for motion prediction,
which was specifically optimized for a given motion pattern.
Detailed software design and optimization process are pre-
sented in Yun et al.?>' Also, it is important to clarify that the
prediction performance of our software does not depend on
any relationship between the phase of motion and the timing
of imaging event. There was no synchronization of the imag-
ing clock and motion control in our experiments.
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II.C. Methodology for intrafractional tracking

Figure 4 describes our tracking process, which was devel-
oped in accordance with the following scenario:

(1) Two sessions of pretracking MR scans are performed
using the linac-MR as indicated in Steps 1 and 9 in
Fig. 4. Both of these sessions proceed with the same
MR sequence, phantom setup, and the motion pattern
that would be used in the actual intrafractional tracking
experiments.

(2) During tracking, the linac-MR provides 2D intrafrac-
tional, dynamic MR imaging of a target (Step 14). An
MR imaging slice, perpendicular to the beam direc-
tion, with 30 mm thickness is selected to visualize the
target as shown in Fig. 3(c). No synchronization is
necessary between the phase of phantom motion and
imaging sequences (i.e., intrafractional MR imaging
may begin at a randomly chosen time point).

All of our software was coded in LabVIEW 2011 and exe-
cuted on 32 bit computer system (Windows7, Intel 17-2600k,
4 GB RAM).

Il.C.1. Preparation 1

In Preparation 1 (Steps 1-8 in Fig. 4), we optimize (1) pa-
rameters for the autocontouring software, and (2) the ANN
structure and IW for motion prediction software. This occurs
3 h before tracking, which is the time requirement to execute
Steps 1-8 in our computer system.

In Step 1, a pretracking MR scan is performed for 2 min
at a 4 fps imaging rate, acquiring 480 images. In Step 2, the
parameters required for the autocontouring software are op-
timized using the images from Step 1. We chose to use the
first 16 images (4 s length) in Step 2, because 4 s is sufficient
to cover the peak-to-peak movement of the phantom follow-
ing the motion patterns used in this study. The target shown
in each of these 16 images is manually contoured, and our
software searches for the parameters that can produce an au-
tocontoured target shape that is the most similar to the man-
ual one in each image. Due to this algorithm, the accuracy
of manual contouring is an important factor determining au-
tocontouring performance. The manual contouring should be
done by an expert user (e.g., radiation oncologists) if auto-
contouring were to be applied to in vivo images. In this study,
however, accurate manual contouring was relatively easy due
to the high contrast between the target and the background re-
gion. It is important to clarify that tumor contouring during
the actual tracking session is fully automatic. Our software
only uses the manual contours to arrive at the best parameters
that will be used for autocontouring. The optimized parame-
ters are stored in Step 3.

In Step 4, all images from Step 1 are autocontoured using
the parameters from Step 2 in conjuction with the autocon-
touring software. In Step 5, our software (1) calculates the
centroid position of the target from the autocontoured target
shape in each image, and (2) records the centroid position in
each image as a function of time. This record is referred as a
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TABLE I. Summary of time requirements to perform Steps 1-13.

Process Time

Preparation 1 First MR scan (Step 1) 2 min
ANN optimization (Step 7) ~3h

Preparation 2 Second MR scan (Step 9) 2 min
ANN training (Step 12) 1 min

Total time requirement ~3h

training motion pattern as used in the motion prediction soft-
ware. The training pattern, and the amount of system delay
determined in Step 6 serve as input to Step 7 for the ANN
structure and IW optimizations. Step 6 is explained earlier in
Sec. I1.B.2. In Step 8, an optimized ANN structure and IW are
stored.

Il.C.2. Preparation 2

In Preparation 2 (Steps 9-13 in Fig. 4), we further train
the optimized ANN using the most recent tumor motion data.
Preparation 2 occurs immediately prior to actual tumor track-
ing and takes approximately 3 min to complete.

In Step 9, a pretracking MR scan is performed for 2 min.
In Steps 10 and 11, all images from Step 9 are autocontoured,
and a training pattern is created. In Step 12, we train the ANN
obtained from Step 8 for 1 min using the training pattern and
system delay from Steps 11 and 6, respectively. The ANN is
trained for approximately 10 000 epochs during 1 min, where
one epoch refers to a single passing of a training pattern (pre-
diction followed by weight corrections) through the ANN dur-
ing iterative trainings. ANN training uses the training pat-
tern solely derived from the image data and does not use the
phantom motion encoder values. A detailed training process
is presented in our previous publication.?! The trained ANN
is stored in Step 13. Table I provides the summary of time
requirements to perform Steps 1-13.

1.C.3. Intrafractional tracking

The treatment beam is continuously on while Steps 14—19
in Fig. 4 are executed during intrafractional tracking. In Step
14, tracking begins with intrafractional MR imaging at 4 fps
while the phantom is undergoing one of the two motion pat-
terns simulating the tumor motion. Each MR image is auto-
contoured immediately after the acquisition in Step 15, using
the parameters from Step 3.

In Step 16, our software determines the centroid position
of the target contour, i.e., a current target position. This is
input to Step 17 in order to predict a future target position.
The prediction occurs using the ANN and system delay from
Steps 13 and 6, respectively. For example, if the system delay
is 500 ms, Step 17 will output a target position at 500 ms in
the future.

In Step 18, the MLC conforms to the target contour at
its predicted future position using the results from Steps 15
and 17. Here, the MLC leaf positions are determined as the
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following: (1) the leaf positions are calculated to conform
the MLC beam shape to the autocontoured target shape from
Step 15, and (2) these leaf positions are shifted to translate
the MLC shape to a future target position (i.e., centroid) ob-
tained from Step 17. Depending on the result from Step 19,
Steps 1518 are iterated on each intrafractional MR image, or
tracking is terminated.

It is important to note that Step 17, predicting the future
tumor position, occurs at the same rate as the imaging fre-
quency during tracking. This is because approximately the
same amount of time (a few ms difference) is required to ex-
ecute Steps 14—16 for each image. This result can be general-
ized to other imaging frequencies. Since each image was ac-
quired at 4 fps (i.e., every 250 ms) in this study, the prediction
occurred at the same rate, every 250 ms. If we use a different
MR imaging rate for tracking; for example, 5 fps (i.e., every
200 ms), then the prediction will occur every 200 ms.

1.D. Demonstration of intrafractional tracking

We demonstrated intrafractional MR tumor tracking ac-
cording to the four different scenarios shown in Table II. Each
scenario was tested using two motion patterns as mentioned
in Sec. I.A.4 with 2 min beam on time (100 MU/min).

Scenario 0 (SO) generates a “gold-standard” result, because
radiation delivery to a static or moving target will be identi-
cal if we track the target perfectly. SO was performed prior
to each scenario, and the film exposed in other scenarios was
registered and compared to the film from SO.

S1 simulates the situation of applying the maximum mar-
gin around the target covering the full extent of target mo-
tion. Thus, the wider, fixed beam will irradiate the moving
target and the target is expected to remain inside the beam
portal at all times. To demonstrate S1, we would ideally fix
the Gafchromic film to measure the beam port with maximum
margin and image the moving target in real-time using MRIL
This requires physical separation of the film from the moving
phantom, and the registration of film image with MR images
to show that the target is always inside the beam. However,
due to our phantom design where the film must travel with
the phantom, we fixed the phantom at its equilibrium position
and delivered radiation with the maximum beam margin to
determine the beam width required to cover the moving target
without tracking.

Scenarios S2—-S4 are performed with the moving phantom.
In S2, the MLC is conformed to the equilibrium target con-
tour and location with no beam margin during beam delivery,
representing radiation delivery without accounting for tumor

TABLE II. Tracking scenarios.

Scenario 0 (S0) S1 S2 S3 S4
Phantom motion No No Yes Yes Yes
Beam margin None Maximum None None None
MLC tracking No No No Yes Yes
Motion prediction No No No No Yes
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motion. In S3, MLC tracking is enabled without motion pre-
diction, i.e., beam follows the phantom motion without mo-
tion prediction capability. In S4, the motion prediction fea-
ture is enabled in addition to MLC tracking. The last scenario
represents the mode of operation envisaged for future clinical
systems.

Il.LE. Tracking accuracy evaluation

We evaluated the tracking accuracy of each scenario using
the following methods:

(1) Observing encoder readings of phantom and MLC:
During tracking experiments, we recorded encoder
readings from phantom and MLC every 50 ms. As
explained earlier, there was no synchronization of the
imaging clock and the phase of phantom motion in our
experiments. Using the encoder readings, we plotted
the position changes of the phantom and MLC during
tracking as a function of time, and observed the time
difference between the two curves in each scenario.
The time difference here should ideally be zero if the
tracking is perfect.

(2) Film measurements: There was no difference in total
time spent in generating the films for each of the sce-
narios. All films were digitized approximately 12 h
after exposure, using a VIDAR VXR film digitizer
(VIDAR Systems Corporation, Herndon, VA) at 0.36
x 0.36 mm? resolution. The digitized optical density
was converted to dose (cGy) using our inhouse de-
veloped software.> We then compared (1) 80%—-20%
penumbra width (i.e., the distance between two points
receiving 80% and 20% of the maximum dose), and
(2) beam width at 50% of the maximum dose in each
scenario. These were calculated from the profiles as
indicated in Fig. 6.

lll. RESULTS
lll.LA. Encoder readings of phantom and MLC

We monitored and recorded the positional changes of the
phantom and each MLC leaf during tracking through encoder
readings. This yielded 11 sets of motion data (1 from the
phantom encoder, 10 from the MLC encoder). As explained
earlier, all encoder readings were taken at the same instance
every 50 ms and time-stamped. These motion data were nor-
malized and plotted as a function of time. From these, we
calculated the MLC encoder reading shown in Fig. 5, which
is an average of five encoder readings from Encoder-R in
Fig. 1(a). The averaging was performed due to the follow-
ing reason. Although we tracked the rigid target undergoing
translational motion, there exist slight motor-to-motor varia-
tions in encoder readings, because (1) each motor drives each
MLC leaf conforming to the autocontoured target shape, and
(2) the autocontoured target shape can slightly change, within
1 pixel on the edges, as the quality of intrafractional MR
images are not identical during tracking experiments. This
caused approximately 2% variation in target size among the
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FI1G. 5. Encoder reading comparisons from phantom and MLC (recorded every 50 ms during tracking). The readings correspond to scenarios S2—-S4 and the

two motion patterns are shown.

images. Nevertheless, because the variability of the five en-
coder readings was small (~ 3%), we reported the average of
five encoder readings to provide better representation of MLC
motions as a whole in Fig. 5.

In S2 plots (sine and modified cosine) shown in Fig. 5,
dotted lines indicate phantom motions following both motion
patterns. There is no MLC motion in S2, therefore the encoder
reading is represented as a straight line.

To find the amount of system delay, we performed tumor
tracking without a motion prediction capability. S3 plots in
Fig. 5 show the position changes of the phantom and MLC
during this test in both motion patterns, and we calculated sys-
tem delay from the time difference between the two curves.
For example, in case of the sine pattern, the S3 plot shows
constant lagging of MLC motion curve behind the phantom
motion curve. The two motion curves were best matched
when shifted by 275 ms, which is the amount of system delay.
The same method was used to calculate 340 ms system delay
in the modified cosine pattern. The difference in the amount
of system delays is due to different target speeds (maximum
speed of 1.8 and 3.1 cm/s in sine and modified cosine pat-
terns, respectively); hence, different time requirements for
MLC tracking in two motion patterns. Using these system de-
lay values, our motion prediction software was optimized and
trained for each motion pattern prior to tracking as explained
in Sec. IL.C.1.

S4 plots show no observable time difference between the
two curves, indicating the phantom motion during system de-
lay is more accurately tracked by the MLC due to the enabling
of the motion prediction feature.

IIl.B. Film measurement

Figure 6 shows the films exposed in different tracking sce-
narios (S0-S4). SO was performed prior to each scenario, and
each film exposed in S1-S4 was registered to the film from SO
using surrogates markers as explained in Sec. II.A.2. All films
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were digitized, and their optical density values were converted
to dose (cGy). Dose profiles were calculated along the white
dashed line indicated in Fig. 6. The open beam dose profiles
are not flat due to a slight misalignment of the beam and the
flattening filter in the linac-MR. The dose rates are similar to
those of clinical 600 C units (50, 100, 150, 200, 250 cGy/min
at isocenter).

In S1, the target is fully irradiated, but much larger volume
than the designed target in this experiment is irradiated. In
S2, the amount of unnecessary dose is decreased. However,
we cannot deliver sufficient dose to the target.

In S3, unnecessary dose to surrounding region is substan-
tially decreased by enabling tracking feature. However, there
still exist hot and cold spots, and general mismatch of penum-
bra, when comparing SO and S3 dose profiles. This is due to
target motions during system delay, which will be increased as
the speed of target motion increases. Comparing S3 dose pro-
files from both motion patterns, the area of hot and cold spots
and penumbra mismatch are larger when we use the modified
cosine pattern which has a faster target speed.

In S4, we delivered highly conformal dose to the moving
target by adding a motion prediction feature. Dose profiles
between static and moving target cases show good agreement
in both motion patterns. It should be noted that no margin for
target motion is included in scenarios S2—-S4.

From visual inspection, the shape of the high dose re-
gion covering the target in S4 films show the sharpest edges
compared to the blurred ones shown in S2 and S3 films. In
Table III, we compared (1) beam width at 50%, and (2) 80%—
20% penumbra width from the dose profile in each tracking
scenario. Here, SO values are averaged from all SO dose pro-
files shown in Fig. 6.

The measured value of 50% beam width stays within
41 mm in all scenarios except S1 that represents the delib-
erately introduced geometric margin to account for the target
motion. The measured value of 80%—-20% penumbra width is
increased up to 27 mm in S2 and 9 mm in S3 compared to
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Phantom motion None Sine Modified cosine
Tracking scenario SO S1 S2 S3 S4 S2 S3 S4
50% beam width (mm) 62.5 103.4 63.5 62.4 62.0 63.6 61.9 62.2
80%—-20% penumbra width (mm) 6.9 7.0 33.0 11.5 7.3 34.1 15.8 8.6
Phantom Eiifirasidee Profile along white line
motion (- : left film, — : right film)
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FIG. 6. Film measurement in different scenarios using the sine and modified cosine motion patterns.
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S0. In S4, however, the increase in penumbra width is limited
to 0.4 and 1.7 mm in the sine and modified cosine patterns,
respectively.

IV. DISCUSSION

This study presents the first demonstration of intrafrac-
tional tumor tracking using 2D MR images. Using a prototype
linac-MR, our tracking system automatically tracks the mo-
tion and delivers radiation onto the moving target. The MRI-
guided tumor tracking study by Crijns et al.*® does not per-
form intrafractional 2D imaging of the tumor and does not
address the system delay, discussed in Sec II.B.2, introduced
mainly by the MLC motion.

The dosimetric advantage of intrafractional tracking in
treating mobile tumors is clearly shown in Fig. 6. Using our
tracking method, we delivered highly conformal dose to a
moving target simulating 1D lung-tumor motions in SI direc-
tion. Compared to static target irradiation, 50% beam width
remained within 0.5 mm, and the 80%—20% penumbra width
increased by 0.4 and 1.7 mm in moving target irradiations
using the sine and modified cosine motion patterns, respec-
tively. The difference in penumbra width in these two mo-
tion patterns arises due to the maximum target speed, 1.8 and
3.1 cm/s at maximum, respectively. These results are applica-
ble to the current phantom and experimental situation. Further
investigations are required to demonstrate the proper opera-
tion of our tracking system with the patient or patient like
situations. Also, for the same reason, it is difficult to discuss
the impact of our results on an intensity-modulated radiation
therapy (IMRT) delivery at current stage, even though several
studies have discussed applying IMRT combined with real-
time tracking capability.>’ "

Various prediction algorithms including using ANN have
been proposed to compensate for tumor motion during sys-
tem delay.*'* Although it would be interesting to incorpo-
rate these previously developed algorithms in our tracking
system and compare the results, the following main prob-
lem exists in reality: all previously developed algorithms as-
sumed the tumor position detection at 30 Hz by monitoring
the position of tumor surrogates using optical tracking de-
vices, or a stereoscopic x-ray fluoroscopy system. However,
current MR imaging can typically achieve image acquisition
rates of 3—4 fps. Due to this significant difference in detection
rates, we had to develop a new algorithm designed specif-
ically for MR-based tumor tracking. This report presents
the tumor tracking performance achieved by using our pre-
diction algorithm. If a new algorithm for MR-based track-
ing is developed in future, then a comparison study can be
performed.

Our motion prediction algorithm functioned well in our
tracking system, where a large amount of system delay is in-
evitable due to MR image acquisition and image processing
time. We expect that our algorithm will also function for other
non-MRI based modern tracking systems, which should have
much shorter system delay time without having to perform
MR imaging. The system delay in a real clinical system can
be determined by either of the following two methods: (1) a
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pretreatment MR scan will provide tumor motions in several
breathing cycles. The phantom can then be programmed to
undergo this motion pattern and the system delay can be de-
termined using the same method as described in Sec. 11.B.2;
(2) the system delay mainly depends on tumor speed. Thus,
a lookup table of system delay can be created as a function
of tumor speed. The patient specific system delay can then be
looked up from this table based on the patient’s tumor speed
obtained from the pretreatment MR scan.

We used the motion patterns that are stable and perfectly
periodic in this study. However, it is unreasonable to expect
such high reproducibility in patient breathing motions. This
inevitable challenge will mainly affect the motion prediction
performance of the tracking system. To minimize the errors
in motion prediction due to inter- or intrafractional instabil-
ity of motion patterns, the following two features are imple-
mented in our motion prediction software: (1) to deal with
interfractional motion changes, the software was designed to
reoptimize its ANN for each fraction of the treatment. In this
process, the tumor motion data recorded from a previous frac-
tion are used as a training motion pattern, presuming that
tumor motions in two consecutive fractions are the most sim-
ilar; (2) to deal with intrafractional motion changes, adap-
tive learning is incorporated in the software by continuously
updating the weights and learning rate (n) of a given ANN
during motion prediction in real-time. The weights and , rep-
resent the knowledge and convergence rate of ANN, respec-
tively. More explanations can be found in Haykin.*> In this
way, the ANN’s learning process is not limited to the training
session alone but continues during the actual tracking session,
and our predictor can adapt to the intrafractional changes in
motion pattern to a certain degree.

Because accurate motion prediction is essential for suc-
cessful intrafractional tracking, we evaluated the prediction
performance of our software using realistic lung-tumor mo-
tions in our previous study.’! Here, the 1D superior-inferior
lung-tumor motions of 29 lung cancer patients were used to
test our software for various system delays of 120-520 ms,
in increments of 80 ms. For 280 and 360 ms system delays
that are more relevant to this study, mean RMSE values of 0.7
and 0.8 mm (ranges 0.1-2.5 mm) were observed, respectively.
Proving these results through actual tracking experiments us-
ing realistic lung-tumor motions will be a subject of future
study.

We focused on tracking 1D translational motions of a rigid
target in this study. Real tumor motion, however, includes
translation, rotation, as well as volume changes. For exam-
ple, lung-tumor shows 3D displacement with volume changes
and rotational motions during normal breathing. Hence, the
next step will be demonstrating more realistic tumor tracking
in 3D space. Currently, we can accomplish 2D MR imaging
with 4 fps imaging rate to track lung-tumor motions. How-
ever, a potential problem that can arise is through plane tu-
mor motion (motion orthogonal to the imaging plane), even
though numerous studies have demonstrated that the largest
lung-tumor motions occur in SI directions. Potential solutions
to this problem could be adjusting the orientation and slice
thickness of the imaging plane to capture the SI directional
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tumor motion and ensure the tumor remains in the imaging
plane.

Tumor shape deformation during beam delivery due to ro-
tation, volume changes, and other reasons is another chal-
lenge. To evaluate tracking performance in these situations,
we must develop an MRI compatible, deformable motion
phantom that has accurate deformation reproducibility. This
requires simultaneous implementation of known patterns of
motion and deformation. The phantom used in this study
contains a simulated target of rigid shape in order to show
practicality of tracking. Nevertheless, our tracking system is
not limited to rigid body tracking. Our tracking method is
based on (1) determining both the shape and location of the
target from each MR image, and (2) reshaping and mov-
ing the MLC accordingly in real-time. To achieve this, our
autocontouring software was designed to deal with possible
deformations of the tumor shape, and it contours each im-
age individually without the need of a priori assumptions
regarding tumor shape or contrast. The autocontouring per-
formance of the software used in this study was previously
evaluated through a phantom study (circular and noncircular
tumor shapes),”’ as well as an in vivo study.*® In both stud-
ies, autocontoured targets/tumors were compared to standard,
manual contours. Here, it was shown that the autocontouring
accuracy decreases with lower contrast-to-noise ratio (CNR)
of the target/tumor in MR images. Nevertheless, if CNR
>5, autocontours have an average centroid displacement <1
and <2 mm, as well as Dice’s coefficient >93% and >83%
compared to the standard contours in the phantom and in vivo
study, respectively. This might be an indication of the CNR
level required for successful autocontouring; however, more
investigation is needed to evaluate the software performance
with deformable target shapes. This future study will include
developing a deformable phantom.

This study was carried out to demonstrate the technical as-
pect of MRI based tracking using a phantom. Current phan-
tom design and target shape were decided considering several
factors including MLC leaf width, prototype linac-MR geom-
etry, and RF coil size. The phantom may represent a more
suitable condition for contrast in the images as it does not in-
clude the susceptibility issues occurring at the air-tissue inter-
face of human lung. Further studies using realistic phantoms,
human volunteers, and/or patients are required.

V. CONCLUSION

We have demonstrated intrafractional MR tumor tracking
using a prototype linac-MR. An MR compatible motion phan-
tom was used to simulate tumor motions during 2 min of ir-
radiation. Different tumor tracking scenarios were tested with
two different phantom motion patterns.

We delivered highly conformal dose to a moving target
using predictive tumor tracking. Compared to static target
irradiation, 50% beam width remains virtually unchanged,
<0.5mm, and the increase in 80%—20% penumbra width is
less than 1.7 mm in moving target irradiation. These results il-
lustrate potential dosimetric advantages of intrafractional MR
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tumor tracking in treating mobile tumors as shown for the
phantom case.
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